Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 6.485
1.
Front Immunol ; 15: 1385190, 2024.
Article En | MEDLINE | ID: mdl-38711523

The discovery of Suppressor of Cytokine Signaling 1 (SOCS1) in 1997 marked a significant milestone in understanding the regulation of Janus kinase/Signal transducer and activator of transcription (JAK/STAT) signaling pathways. Subsequent research deciphered its cellular functions, and recent insights into SOCS1 deficiencies in humans underscored its critical role in immune regulation. In humans, SOCS-haploinsufficiency (SOCS1-HI) presents a diverse clinical spectrum, encompassing autoimmune diseases, infection susceptibility, and cancer. Variability in disease manifestation, even within families sharing the same genetic variant, raises questions about clinical penetrance and the need for individualized treatments. Current therapeutic strategies include JAK inhibition, with promising results in controlling inflammation in SOCS1-HI patients. Hematopoietic stem cell transplantation and gene therapy emerge as promising avenues for curative treatments. The evolving landscape of SOCS1 research, emphasizes the need for a nuanced understanding of genetic variants and their functional consequences.


Signal Transduction , Suppressor of Cytokine Signaling 1 Protein , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Animals , Janus Kinases/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/therapy , Neoplasms/genetics , Neoplasms/immunology , Neoplasms/therapy , Haploinsufficiency , STAT Transcription Factors/metabolism , STAT Transcription Factors/genetics , Genetic Therapy
2.
Int Immunopharmacol ; 133: 112132, 2024 May 30.
Article En | MEDLINE | ID: mdl-38691918

OBJECTIVE: This study employed Mendelian Randomization (MR) to investigate the causal relationship between genetic susceptibility to vitiligo and the risk of various autoimmune diseases, along with the mediating role of blood metabolites. METHODS: We performed two-sample MR analyses using aggregated genome-wide association studies (GWAS) data on 486 blood metabolites, vitiligo, and nine autoimmune diseases to investigate blood metabolites' causal effects on the susceptibility of vitiligo and the associations of vitiligo with nine autoimmune comorbidities. We also applied multivariable MR to unravel metabolites by which vitiligo influences the pathogenesis of autoimmune diseases. RESULTS: Our findings indicate that vitiligo amplified the risk of several autoimmune diseases, including rheumatoid arthritis (OR 1.17; 95 % CI 1.08-1.27), psoriasis (OR 1.10; 95 % CI 1.04-1.17), type 1 diabetes (OR 1.41; 95 % CI 1.23-1.63), pernicious anemia (OR 1.23; 95 % CI 1.12-1.36), autoimmune hypothyroidism (OR 1.19; 95 % CI 1.11-1.26), alopecia areata (OR 1.22; 95 % CI 1.10-1.35), and autoimmune Addison's disease (OR 1.22; 95 % CI 1.12-1.33). Additionally, our analysis identified correlations with vitiligo for 14 known (nine risk, five protective) and seven uncharacterized serum metabolites. After adjusting for genetically predicted levels of histidine and pyruvate, the associations between vitiligo and these diseases were attenuated. CONCLUSIONS: We substantiated vitiligo's influence on susceptibility to seven autoimmune diseases and conducted a thorough investigation of serum metabolites correlated with vitiligo. Histidine and pyruvate are potential mediators of vitiligo associated with autoimmune diseases.By combining metabolomics with genomics, we provide new perspectives on the etiology of vitiligo and its immune comorbidities.


Autoimmune Diseases , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Vitiligo , Vitiligo/genetics , Vitiligo/blood , Humans , Autoimmune Diseases/blood , Autoimmune Diseases/genetics , Polymorphism, Single Nucleotide
3.
Int J Rheum Dis ; 27(5): e15185, 2024 May.
Article En | MEDLINE | ID: mdl-38742742

OBJECTIVES: This study aimed to unravel the complexities of autoimmune diseases by conducting a comprehensive analysis of gene expression data across 10 conditions, including systemic lupus erythematosus (SLE), psoriasis, Sjögren's syndrome, sclerosis, immune-associated diseases, osteoarthritis, cystic fibrosis, inflammatory bowel disease (IBD), type 1 diabetes, and Guillain-Barré syndrome. METHODS: Gene expression profiles were rigorously examined to identify both upregulated and downregulated genes specific to each autoimmune disease. The study employed visual representation techniques such as heatmaps, volcano plots, and contour-MA plots to provide an intuitive understanding of the complex gene expression patterns in these conditions. RESULTS: Distinct gene expression profiles for each autoimmune condition were uncovered, with psoriasis and osteoarthritis standing out due to a multitude of both upregulated and downregulated genes, indicating intricate molecular interplays in these disorders. Notably, common upregulated and downregulated genes were identified across various autoimmune conditions, with genes like SELENBP1, MMP9, BNC1, and COL1A1 emerging as pivotal players. CONCLUSION: This research contributes valuable insights into the molecular signatures of autoimmune diseases, highlighting the unique gene expression patterns characterizing each condition. The identification of common genes shared among different autoimmune conditions, and their potential role in mitigating the risk of rare diseases in patients with more prevalent conditions, underscores the growing significance of genetics in healthcare and the promising future of personalized medicine.


Autoimmune Diseases , Gene Expression Profiling , Genetic Predisposition to Disease , Humans , Autoimmune Diseases/genetics , Transcriptome , Autoimmunity/genetics , Databases, Genetic , Gene Expression Regulation , Phenotype
4.
Int J Rheum Dis ; 27(5): e15151, 2024 May.
Article En | MEDLINE | ID: mdl-38720573

BACKGROUND: Observational studies have found an association between autoimmune liver disease (AILD) and Sjögren's syndrome (SS). However, the causal relationship between the two remains unknown. Clinical guidelines indicate that the coexistence of AILD with other autoimmune diseases may impact prognosis and quality of life; hence, early recognition and management of extrahepatic autoimmune diseases is particularly crucial. Against this backdrop, this study aimed to utilize Mendelian randomization (MR) methods to investigate the potential causal relationship between AILD and SS. METHODS: We extracted summary statistics on AILD and SS from publicly available genome-wide association studies (GWAS) databases to identify appropriate instrumental variables (IVs). The inverse-variance weighted (IVW) method was utilized as the primary approach, with the weighted median (WM) method and MR-Egger method employed as supplementary methods to evaluate the potential causal relationship between the two conditions. Sensitivity analyses, including Cochran's Q test, MR-polynomial residuals and outliers (MR-PRESSO), MR-Egger intercept test, and the leave-one-out test, were performed to assess the stability of the results. RESULTS: The MR study results indicate a significant causal relationship between PBC and PSC with the risk of SS in the European population (IVW: odds ratio [OR] = 1.155, 95% confidence interval [CI]: 1.092-1.222, p < .001; IVW: OR = 1.162, 95% CI: 1.051-1.284, p = .003). A series of sensitivity analyses have confirmed the reliability of the results. CONCLUSIONS: Our study indicates that the presence of both PBC and PSC increases the susceptibility to SS. However, no reliable causal relationship was found between SS and the risk of PBC or PSC. These findings contribute to elucidating the potential pathogenic mechanisms of the disease and are of significant importance for the management of patients with PBC and PSC.


Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Sjogren's Syndrome , Humans , Sjogren's Syndrome/genetics , Sjogren's Syndrome/diagnosis , Sjogren's Syndrome/epidemiology , Risk Factors , Risk Assessment , Autoimmune Diseases/genetics , Autoimmune Diseases/epidemiology , Autoimmune Diseases/diagnosis , Phenotype , Liver Cirrhosis, Biliary/genetics , Liver Cirrhosis, Biliary/epidemiology , Liver Cirrhosis, Biliary/diagnosis
5.
Cell Commun Signal ; 22(1): 262, 2024 May 07.
Article En | MEDLINE | ID: mdl-38715122

Gene editing of living cells has become a crucial tool in medical research, enabling scientists to address fundamental biological questions and develop novel strategies for disease treatment. This technology has particularly revolutionized adoptive transfer cell therapy products, leading to significant advancements in tumor treatment and offering promising outcomes in managing transplant rejection, autoimmune disorders, and inflammatory diseases. While recent clinical trials have demonstrated the safety of tolerogenic dendritic cell (TolDC) immunotherapy, concerns remain regarding its effectiveness. This review aims to discuss the application of gene editing techniques to enhance the tolerance function of dendritic cells (DCs), with a particular focus on preclinical strategies that are currently being investigated to optimize the tolerogenic phenotype and function of DCs. We explore potential approaches for in vitro generation of TolDCs and provide an overview of emerging strategies for modifying DCs. Additionally, we highlight the primary challenges hindering the clinical adoption of TolDC therapeutics and propose future research directions in this field.


Autoimmune Diseases , Dendritic Cells , Humans , Dendritic Cells/immunology , Autoimmune Diseases/therapy , Autoimmune Diseases/immunology , Autoimmune Diseases/genetics , Animals , Gene Editing/methods , Immunotherapy/methods
6.
Front Immunol ; 15: 1325127, 2024.
Article En | MEDLINE | ID: mdl-38711527

Background: Sarcoidosis has been considered to be associated with many autoimmune diseases (ADs), but the cause-and-effect relationship between these two diseases has not been fully explored. Therefore, the objective of this study is to explore the possible genetic association between sarcoidosis and ADs. Methods: We conducted a bidirectional Mendelian randomization (MR) study using genetic variants associated with ADs and sarcoidosis (4,041 cases and 371,255 controls) from the FinnGen study. The ADs dataset comprised 96,150 cases and 281,127 controls, encompassing 44 distinct types of autoimmune-related diseases. Subsequently, we identified seven diseases within the ADs dataset with a case size exceeding 3,500 and performed subgroup analyses on these specific diseases. Results: The MR evidence supported the causal association of genetic predictors of ADs with an increased risk of sarcoidosis (OR = 1.79, 95% CI = 1.59 to 2.02, P IVW-FE = 1.01 × 10-21), and no reverse causation (OR = 1.05, 95% CI 0.99 to 1.12, P IVW-MRE = 9.88 × 10-2). Furthermore, subgroup analyses indicated that genetic predictors of type 1 diabetes mellitus (T1DM), celiac disease, and inflammatory bowel disease (IBD) were causally linked to an elevated risk of sarcoidosis (All P < 6.25 × 10-3). Conversely, genetic predictors of sarcoidosis showed causal associations with a higher risk of type 1 diabetes mellitus (P < 6.25 × 10-3). Conclusion: The present study established a positive causal relationship between genetic predictors of ADs (e.g. T1DM, celiac disease, and IBD) and the risk of sarcoidosis, with no evidence of reverse causation.


Autoimmune Diseases , Genetic Predisposition to Disease , Mendelian Randomization Analysis , Sarcoidosis , Humans , Sarcoidosis/genetics , Sarcoidosis/epidemiology , Autoimmune Diseases/genetics , Autoimmune Diseases/epidemiology , Polymorphism, Single Nucleotide , Case-Control Studies , Genome-Wide Association Study
7.
J Transl Med ; 22(1): 425, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704596

BACKGROUND: The intricate etiology of autoimmune liver disease (AILD) involves genetic, environmental, and other factors that yet to be completely elucidated. This study comprehensively assessed the causal association between genetically predicted modifiable risk factors and AILD by employing Mendelian randomization. METHODS: Genetic variants associated with 29 exposure factors were obtained from genome-wide association studies (GWAS). Genetic association data with autoimmune hepatitis (AIH), primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) were also obtained from publicly available GWAS. Univariate and multivariate Mendelian randomization analyses were performed to identify potential risk factors for AILD. RESULTS: Genetically predicted rheumatoid arthritis (RA) (OR = 1.620, 95%CI 1.423-1.843, P = 2.506 × 10- 13) was significantly associated with an increased risk of AIH. Genetically predicted smoking initiation (OR = 1.637, 95%CI 1.055-2.540, P = 0.028), lower coffee intake (OR = 0.359, 95%CI 0.131-0.985, P = 0.047), cholelithiasis (OR = 1.134, 95%CI 1.023-1.257, P = 0.017) and higher C-reactive protein (CRP) (OR = 1.397, 95%CI 1.094-1.784, P = 0.007) were suggestively associated with an increased risk of AIH. Genetically predicted inflammatory bowel disease (IBD) (OR = 1.212, 95%CI 1.127-1.303, P = 2.015 × 10- 7) and RA (OR = 1.417, 95%CI 1.193-1.683, P = 7.193 × 10- 5) were significantly associated with increased risk of PBC. Genetically predicted smoking initiation (OR = 1.167, 95%CI 1.005-1.355, P = 0.043), systemic lupus erythematosus (SLE) (OR = 1.086, 95%CI 1.017-1.160, P = 0.014) and higher CRP (OR = 1.199, 95%CI 1.019-1.410, P = 0.028) were suggestively associated with an increased risk of PBC. Higher vitamin D3 (OR = 0.741, 95%CI 0.560-0.980, P = 0.036) and calcium (OR = 0.834, 95%CI 0.699-0.995, P = 0.044) levels were suggestive protective factors for PBC. Genetically predicted smoking initiation (OR = 0.630, 95%CI 0.462-0.860, P = 0.004) was suggestively associated with a decreased risk of PSC. Genetically predicted IBD (OR = 1.252, 95%CI 1.164-1.346, P = 1.394 × 10- 9), RA (OR = 1.543, 95%CI 1.279-1.861, P = 5.728 × 10- 6) and lower glycosylated hemoglobin (HbA1c) (OR = 0.268, 95%CI 0.141-0.510, P = 6.172 × 10- 5) were positively associated with an increased risk of PSC. CONCLUSIONS: Evidence on the causal relationship between 29 genetically predicted modifiable risk factors and the risk of AIH, PBC, and PSC is provided by this study. These findings provide fresh perspectives on the management and prevention strategies for AILD.


Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Risk Factors , Autoimmune Diseases/genetics , Hepatitis, Autoimmune/genetics , Hepatitis, Autoimmune/epidemiology , Polymorphism, Single Nucleotide/genetics , Causality , Liver Diseases/genetics , Liver Cirrhosis, Biliary/genetics
8.
Front Public Health ; 12: 1333811, 2024.
Article En | MEDLINE | ID: mdl-38605869

Background: In recent years, an increasing number of observational studies have reported the impact of air pollution on autoimmune diseases (ADs). However, no Mendelian randomization (MR) studies have been conducted to investigate the causal relationships. To enhance our understanding of causality, we examined the causal relationships between particulate matter (PM) and nitrogen oxides (NOx) and ADs. Methods: We utilized genome-wide association study (GWAS) data on PM and NOx from the UK Biobank in European and East Asian populations. We also extracted integrated GWAS data from the Finnish consortium and the Japanese Biobank for two-sample MR analysis. We employed inverse variance weighted (IVW) analysis to assess the causal relationship between PM and NOx exposure and ADs. Additionally, we conducted supplementary analyses using four methods, including IVW (fixed effects), weighted median, weighted mode, and simple mode, to further investigate this relationship. Results: In the European population, the results of MR analysis suggested a statistically significant association between PM2.5 and psoriasis only (OR = 3.86; 95% CI: 1.89-7.88; PIVW < 0.00625), while a potential association exists between PM2.5-10 and vitiligo (OR = 7.42; 95% CI: 1.02-53.94; PIVW < 0.05), as well as between PM2.5 and systemic lupus erythematosus (OR = 68.17; 95% CI: 2.17-2.1e+03; PIVW < 0.05). In East Asian populations, no causal relationship was found between air pollutants and the risk of systemic lupus erythematosus and rheumatoid arthritis (PIVW > 0.025). There was no pleiotropy in the results. Conclusion: Our results suggest a causal association between PM2.5 and psoriasis in European populations. With the help of air pollution prevention and control, the harmful progression of psoriasis may be slowed.


Air Pollution , Autoimmune Diseases , Lupus Erythematosus, Systemic , Psoriasis , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/etiology , Autoimmune Diseases/genetics , Air Pollution/adverse effects , Particulate Matter/adverse effects , Psoriasis/etiology , Psoriasis/genetics
9.
BMC Med ; 22(1): 161, 2024 Apr 15.
Article En | MEDLINE | ID: mdl-38616254

BACKGROUND: To study the shared genetic structure between autoimmune diseases and B-cell acute lymphoblastic leukemia (B-ALL) and identify the shared risk loci and genes and genetic mechanisms involved. METHODS: Based on large-scale genome-wide association study (GWAS) summary-level data sets, we observed genetic overlaps between autoimmune diseases and B-ALL, and cross-trait pleiotropic analysis was performed to detect shared pleiotropic loci and genes. A series of functional annotation and tissue-specific analysis were performed to determine the influence of pleiotropic genes. The heritability enrichment analysis was used to detect crucial immune cells and tissues. Finally, bidirectional Mendelian randomization (MR) methods were utilized to investigate the casual associations. RESULTS: Our research highlighted shared genetic mechanisms between seven autoimmune disorders and B-ALL. A total of 73 pleiotropic loci were identified at the genome-wide significance level (P < 5 × 10-8), 16 of which had strong evidence of colocalization. We demonstrated that several loci have been previously reported (e.g., 17q21) and discovered some novel loci (e.g., 10p12, 5p13). Further gene-level identified 194 unique pleiotropic genes, for example IKZF1, GATA3, IKZF3, GSDMB, and ORMDL3. Pathway analysis determined the key role of cellular response to cytokine stimulus, B cell activation, and JAK-STAT signaling pathways. SNP-level and gene-level tissue enrichment suggested that crucial role pleiotropic mechanisms involved in the spleen, whole blood, and EBV-transformed lymphocytes. Also, hyprcoloc and stratified LD score regression analyses revealed that B cells at different developmental stages may be involved in mechanisms shared between two different diseases. Finally, two-sample MR analysis determined causal effects of asthma and rheumatoid arthritis on B-ALL. CONCLUSIONS: Our research proved shared genetic architecture between autoimmune disorders and B-ALL and shed light on the potential mechanism that might involve in.


Arthritis, Rheumatoid , Asthma , Autoimmune Diseases , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Genome-Wide Association Study , Autoimmune Diseases/genetics
10.
Front Immunol ; 15: 1325868, 2024.
Article En | MEDLINE | ID: mdl-38585265

Background: Many observational studies have been reported that patients with autoimmune or allergic diseases seem to have a higher risk of developing senile cataract, but the views are not consistent. In order to minimize the influence of reverse causality and potential confounding factors, we performed Mendelian Randomization (MR) analysis to investigate the genetic causal associations between autoimmune, allergic diseases and senile cataract. Methods: Single nucleotide polymorphisms associated with ten common autoimmune and allergic diseases were obtained from the IEU Open genome-wide association studies (GWAS) database. Summary-level GWAS statistics for clinically diagnosed senile cataract were obtained from the FinnGen research project GWAS, which consisted of 59,522 individuals with senile cataracts and 312,864 control individuals. MR analysis was conducted using mainly inverse variance weighted (IVW) method and further sensitivity analysis was performed to test robustness. Results: As for ten diseases, IVW results confirmed that type 1 diabetes (OR = 1.06; 95% CI = 1.05-1.08; p = 2.24×10-12), rheumatoid arthritis (OR = 1.05; 95% CI = 1.02-1.08; p = 1.83×10-4), hypothyroidism (OR = 2.4; 95% CI = 1.42-4.06; p = 1.12×10-3), systemic lupus erythematosus (OR = 1.02; 95% CI = 1.01-1.03; p = 2.27×10-3), asthma (OR = 1.02; 95% CI = 1.01-1.03; p = 1.2×10-3) and allergic rhinitis (OR = 1.07; 95% CI = 1.02-1.11; p = 2.15×10-3) were correlated with the risk of senile cataract. Celiac disease (OR = 1.04; 95% CI = 1.01-1.08; P = 0.0437) and atopic dermatitis (OR = 1.05; 95% CI = 1.01-1.10; P = 0.0426) exhibited a suggestive connection with senile cataract after Bonferroni correction. These associations are consistent across weighted median and MR Egger methods, with similar causal estimates in direction and magnitude. Sensitivity analysis further proved that these associations were reliable. Conclusions: The results of the MR analysis showed that there were causal relationships between type 1 diabetes, rheumatoid arthritis, hypothyroidism, systemic lupus erythematosus, asthma, allergic rhinitis and senile cataract. To clarify the possible role of autoimmune and allergy in the pathophysiology of senile cataract, further studies are needed.


Arthritis, Rheumatoid , Asthma , Autoimmune Diseases , Cataract , Diabetes Mellitus, Type 1 , Hypothyroidism , Lupus Erythematosus, Systemic , Rhinitis, Allergic , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/epidemiology , Autoimmune Diseases/genetics , Asthma/epidemiology , Asthma/genetics , Cataract/genetics
11.
Front Immunol ; 15: 1343480, 2024.
Article En | MEDLINE | ID: mdl-38660310

Background: Previous studies have demonstrated that autoimmune diseases are closely associated with bronchiectasis (BE). However, the causal effects between autoimmune diseases and BE remain elusive. Methods: All summary-level data were obtained from large-scale Genome-Wide Association Studies (GWAS). The univariate Mendelian randomization (UVMR) was utilized to investigate the genetic causal correlation (rg) of 12 autoimmune diseases and bronchiectasis, The Multivariable Mendelian Randomization (MVMR) method was used to explore the effects of the confounding factors. Further investigation was conducted to identify potential intermediate factors using mediation analysis. Finally, the linkage disequilibrium score regression (LDSC) method was used to identify genetic correlations among complex traits. A series of sensitivity analyses was performed to validate the robustness of the results. Results: The LDSC analysis revealed significant genetic correlations between BE and Crohn's disease (CD) (rg = 0.220, P = 0.037), rheumatoid arthritis (RA) (rg = 0.210, P = 0.021), and ulcerative colitis (UC) (rg = 0.247, P = 0.023). However, no genetic correlation was found with other autoimmune diseases (P > 0.05). The results of the primary IVW analysis suggested that for every SD increase in RA, there was a 10.3% increase in the incidence of BE (odds ratio [OR] = 1.103, 95% confidence interval [CI] 1.055-1.154, P = 1.75×10-5, FDR = 5.25×10-5). Furthermore, for every standard deviation (SD) increase in celiac disease (CeD), the incidence of BE reduced by 5.1% (OR = 0.949, 95% CI 0.902-0.999, P = 0.044, FDR = 0.044). We also observed suggestive evidence corresponding to a 3% increase in BE incidence with T1DM (OR = 1.033, 95% CI 1.001-1.066, P = 0.042, FDR = 0.063). Furthermore, MVMR analysis showed that RA was an independent risk factor for BE, whereas mediator MR analysis did not identify any mediating factors. The sensitivity analyses corroborated the robustness of these findings. Conclusion: LDSC analysis revealed significant genetic correlations between several autoimmune diseases and BE, and further MVMR analysis showed that RA is an independent risk factor for BE.


Autoimmune Diseases , Bronchiectasis , Genetic Predisposition to Disease , Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Bronchiectasis/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/epidemiology , Polymorphism, Single Nucleotide , Linkage Disequilibrium , Arthritis, Rheumatoid/genetics
12.
Clin Exp Med ; 24(1): 65, 2024 Apr 02.
Article En | MEDLINE | ID: mdl-38564026

Observational studies showed possible associations between systemic lupus erythematosus and multiple myeloma. However, whether there is a casual relationship between different types of autoimmune diseases (type 1 diabetes mellitus, rheumatoid arthritis, systemic lupus erythematosus, psoriasis, multiple sclerosis, primary sclerosing cholangitis, primary biliary cirrhosis, and juvenile idiopathic arthritis) and multiple myeloma (MM) is not well known. We performed a two-sample Mendelian randomization (MR) study to estimate the casual relationship. Summary-level data of autoimmune diseases were gained from published genome-wide association studies while data of MM was obtained from UKBiobank. The Inverse-Variance Weighted (IVW) method was used as the primary analysis method to interpret the study results, with MR-Egger and weighted median as complementary methods of analysis. There is causal relationship between primary sclerosing cholangitis [OR = 1.00015, 95% CI 1.000048-1.000254, P = 0.004] and MM. Nevertheless, no similar causal relationship was found between the remaining seven autoimmune diseases and MM. Considering the important role of age at recruitment and body mass index (BMI) in MM, we excluded these relevant instrument variables, and similar results were obtained. The accuracy and robustness of these findings were confirmed by sensitivity tests. Overall, MR analysis suggests that genetic liability to primary sclerosing cholangitis could be causally related to the increasing risk of MM. This finding may serve as a guide for clinical attention to patients with autoimmune diseases and their early screening for MM.


Autoimmune Diseases , Cholangitis, Sclerosing , Lupus Erythematosus, Systemic , Multiple Myeloma , Humans , Multiple Myeloma/genetics , Genome-Wide Association Study , Mendelian Randomization Analysis , Autoimmune Diseases/genetics
13.
Transl Psychiatry ; 14(1): 172, 2024 Apr 01.
Article En | MEDLINE | ID: mdl-38561342

Observational studies suggest that posttraumatic stress disorder (PTSD) increases risk for various autoimmune diseases. Insights into shared biology and causal relationships between these diseases may inform intervention approaches to PTSD and co-morbid autoimmune conditions. We investigated the shared genetic contributions and causal relationships between PTSD, 18 autoimmune diseases, and 3 immune/inflammatory biomarkers. Univariate MiXeR was used to contrast the genetic architectures of phenotypes. Genetic correlations were estimated using linkage disequilibrium score regression. Bi-directional, two-sample Mendelian randomization (MR) was performed using independent, genome-wide significant single nucleotide polymorphisms; inverse variance weighted and weighted median MR estimates were evaluated. Sensitivity analyses for uncorrelated (MR PRESSO) and correlated horizontal pleiotropy (CAUSE) were also performed. PTSD was considerably more polygenic (10,863 influential variants) than autoimmune diseases (median 255 influential variants). However, PTSD evidenced significant genetic correlation with nine autoimmune diseases and three inflammatory biomarkers. PTSD had putative causal effects on autoimmune thyroid disease (p = 0.00009) and C-reactive protein (CRP) (p = 4.3 × 10-7). Inferences were not substantially altered by sensitivity analyses. Additionally, the PTSD-autoimmune thyroid disease association remained significant in multivariable MR analysis adjusted for genetically predicted inflammatory biomarkers as potential mechanistic pathway variables. No autoimmune disease had a significant causal effect on PTSD (all p values > 0.05). Although causal effect models were supported for associations of PTSD with CRP, shared pleiotropy was adequate to explain a putative causal effect of CRP on PTSD (p = 0.18). In summary, our results suggest a significant genetic overlap between PTSD, autoimmune diseases, and biomarkers of inflammation. PTSD has a putative causal effect on autoimmune thyroid disease, consistent with existing epidemiologic evidence. A previously reported causal effect of CRP on PTSD is potentially confounded by shared genetics. Together, results highlight the nuanced links between PTSD, autoimmune disorders, and associated inflammatory signatures, and suggest the importance of targeting related pathways to protect against disease and disability.


Autoimmune Diseases , Hashimoto Disease , Stress Disorders, Post-Traumatic , Humans , Stress Disorders, Post-Traumatic/genetics , Phenotype , C-Reactive Protein , Autoimmune Diseases/genetics , Biomarkers , Genome-Wide Association Study
14.
Genes (Basel) ; 15(4)2024 Mar 22.
Article En | MEDLINE | ID: mdl-38674328

Autoimmunity is defined as the inability to regulate immunological activities in the body, especially in response to external triggers, leading to the attack of the tissues and organs of the host. Outcomes include the onset of autoimmune diseases whose effects are primarily due to dysregulated immune responses. In past years, there have been cases that show an increased susceptibility to other autoimmune disorders in patients who are already experiencing the same type of disease. Research in this field has started analyzing the potential molecular and cellular causes of this interconnectedness, bearing in mind the possibility of advancing drugs and therapies for the treatment of autoimmunity. With that, this study aimed to determine the correlation of four autoimmune diseases, which are type 1 diabetes (T1D), psoriasis (PSR), systemic sclerosis (SSc), and systemic lupus erythematosus (SLE), by identifying highly preserved co-expressed genes among datasets using WGCNA. Functional annotation was then employed to characterize these sets of genes based on their systemic relationship as a whole to elucidate the biological processes, cellular components, and molecular functions of the pathways they are involved in. Lastly, drug repurposing analysis was performed to screen candidate drugs for repositioning that could regulate the abnormal expression of genes among the diseases. A total of thirteen modules were obtained from the analysis, the majority of which were associated with transcriptional, post-transcriptional, and post-translational modification processes. Also, the evaluation based on KEGG suggested the possible role of TH17 differentiation in the simultaneous onset of the four diseases. Furthermore, clomiphene was the top drug candidate for regulating overexpressed hub genes; meanwhile, prilocaine was the top drug for regulating under-expressed hub genes. This study was geared towards utilizing transcriptomics approaches for the assessment of microarray data, which is different from the use of traditional genomic analyses. Such a research design for investigating correlations among autoimmune diseases may be the first of its kind.


Signal Transduction , Humans , Signal Transduction/genetics , Autoimmune Diseases/genetics , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Oligonucleotide Array Sequence Analysis/methods , Gene Regulatory Networks , Immune System/metabolism , Scleroderma, Systemic/genetics , Scleroderma, Systemic/drug therapy , Scleroderma, Systemic/immunology , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/drug therapy , Lupus Erythematosus, Systemic/immunology , Psoriasis/genetics , Psoriasis/drug therapy , Psoriasis/immunology , Gene Expression Profiling/methods
15.
Nat Commun ; 15(1): 2936, 2024 Apr 05.
Article En | MEDLINE | ID: mdl-38580644

Primary biliary cholangitis (PBC) is a cholestatic autoimmune liver disease characterized by autoreactive T cell response against intrahepatic small bile ducts. Here, we use Il12b-/-Il2ra-/- mice (DKO mice) as a model of autoimmune cholangitis and demonstrate that Cd8a knockout or treatment with an anti-CD8α antibody prevents/reduces biliary immunopathology. Using single-cell RNA sequencing analysis, we identified CD8+ tissue-resident memory T (Trm) cells in the livers of DKO mice, which highly express activation- and cytotoxicity-associated markers and induce apoptosis of bile duct epithelial cells. Liver CD8+ Trm cells also upregulate the expression of several immune checkpoint molecules, including PD-1. We describe the development of a chimeric antigen receptor to target PD-1-expressing CD8+ Trm cells. Treatment of DKO mice with PD-1-targeting CAR-T cells selectively depleted liver CD8+ Trm cells and alleviated autoimmune cholangitis. Our work highlights the pathogenic role of CD8+ Trm cells and the potential therapeutic usage of PD-1-targeting CAR-T cells.


Autoimmune Diseases , Cholangitis , Liver Cirrhosis, Biliary , Mice , Animals , Liver Cirrhosis, Biliary/therapy , Immunotherapy, Adoptive , Programmed Cell Death 1 Receptor , CD8-Positive T-Lymphocytes , Cholangitis/therapy , Autoimmune Diseases/genetics
16.
J Transl Med ; 22(1): 392, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685026

BACKGROUND: Epidemiological evidence links a close correlation between long-term exposure to air pollutants and autoimmune diseases, while the causality remained unknown. METHODS: Two-sample Mendelian randomization (TSMR) was used to investigate the role of PM10, PM2.5, NO2, and NOX (N = 423,796-456,380) in 15 autoimmune diseases (N = 14,890-314,995) using data from large European GWASs including UKB, FINNGEN, IMSGC, and IPSCSG. Multivariable Mendelian randomization (MVMR) was conducted to investigate the direct effect of each air pollutant and the mediating role of common factors, including body mass index (BMI), alcohol consumption, smoking status, and household income. Transcriptome-wide association studies (TWAS), two-step MR, and colocalization analyses were performed to explore underlying mechanisms between air pollution and autoimmune diseases. RESULTS: In TSMR, after correction of multiple testing, hypothyroidism was causally associated with higher exposure to NO2 [odds ratio (OR): 1.37, p = 9.08 × 10-4] and NOX [OR: 1.34, p = 2.86 × 10-3], ulcerative colitis (UC) was causally associated with higher exposure to NOX [OR: 2.24, p = 1.23 × 10-2] and PM2.5 [OR: 2.60, p = 5.96 × 10-3], rheumatoid arthritis was causally associated with higher exposure to NOX [OR: 1.72, p = 1.50 × 10-2], systemic lupus erythematosus was causally associated with higher exposure to NOX [OR: 4.92, p = 6.89 × 10-3], celiac disease was causally associated with lower exposure to NOX [OR: 0.14, p = 6.74 × 10-4] and PM2.5 [OR: 0.17, p = 3.18 × 10-3]. The risky effects of PM2.5 on UC remained significant in MVMR analyses after adjusting for other air pollutants. MVMR revealed several common mediators between air pollutants and autoimmune diseases. Transcriptional analysis identified specific gene transcripts and pathways interconnecting air pollutants and autoimmune diseases. Two-step MR revealed that POR, HSPA1B, and BRD2 might mediate from air pollutants to autoimmune diseases. POR pQTL (rs59882870, PPH4=1.00) strongly colocalized with autoimmune diseases. CONCLUSION: This research underscores the necessity of rigorous air pollutant surveillance within public health studies to curb the prevalence of autoimmune diseases.


Air Pollutants , Autoimmune Diseases , Genome-Wide Association Study , Humans , Autoimmune Diseases/genetics , Air Pollutants/adverse effects , Mendelian Randomization Analysis , Genetic Predisposition to Disease , Particulate Matter/adverse effects
17.
Methods Mol Biol ; 2789: 121-127, 2024.
Article En | MEDLINE | ID: mdl-38506997

Autoimmune responses are characterized by the presence of antibodies and lymphocytes specific to self or so-called autoantigens. Among such autoantigens is DNA; therefore, screening for antibodies recognizing single- and/or double-stranded DNA is commonly used to detect and classify autoimmune diseases. While autoimmunity affects both sexes, females are generally more affected than males, which is recapitulated in some animal models. A variety of factors, including genetic predisposition and the environment, contribute to the development of autoimmune disorders. Since certain drug products may also contribute to the development of autoimmunity, understanding a drug's potential to trigger an autoimmune response is of interest to immunotoxicology. However, models to study autoimmunity are limited, and it is generally agreed that no model can accurately predict autoimmunity in humans. Herein, we present an in vivo protocol utilizing the SJL/J mouse model to study nanoparticles' effects on the development of autoimmune responses. The protocol is adapted from the literature describing the use of this model to study chemically induced lupus.


Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Male , Mice , Female , Animals , Autoimmunity , Autoimmune Diseases/chemically induced , Autoimmune Diseases/genetics , Autoantigens , Mice, Inbred Strains , DNA
18.
Autoimmunity ; 57(1): 2330392, 2024 Dec.
Article En | MEDLINE | ID: mdl-38515381

BACKGROUND: Despite growing knowledge regarding the pathogenesis of autoimmune diseases (ADs) onset, the current treatment remains unsatisfactory. This study aimed to identify innovative therapeutic targets for ADs through various analytical approaches. RESEARCH DESIGN AND METHODS: Utilizing Mendelian randomization, Bayesian co-localization, phenotype scanning, and protein-protein interaction network, we explored potential therapeutic targets for 14 ADs and externally validated our preliminary findings. RESULTS: This study identified 12 circulating proteins as potential therapeutic targets for six ADs. Specifically, IL12B was judged to be a risk factor for ankylosing spondylitis (p = 1.61E - 07). TYMP (p = 6.28E - 06) was identified as a protective factor for ulcerative colitis. For Crohn's disease, ERAP2 (p = 4.47E - 14), HP (p = 2.08E - 05), and RSPO3 (p = 6.52E - 07), were identified as facilitators, whereas FLRT3 (p = 3.42E - 07) had a protective effect. In rheumatoid arthritis, SWAP70 (p = 3.26E - 10), SIGLEC6 (p = 2.47E - 05), ISG15 (p = 3.69E - 05), and FCRL3 (p = 1.10E - 10) were identified as risk factors. B4GALT1 (p = 6.59E - 05) was associated with a lower risk of Type 1 diabetes (T1D). Interestingly, CTSH was identified as a protective factor for narcolepsy (p = 1.58E - 09) but a risk factor for T1D (p = 7.36E - 11), respectively. External validation supported the associations of eight of these proteins with three ADs. CONCLUSIONS: Our integrated study identified 12 potential therapeutic targets for ADs and provided novel insights into future drug development for ADs.


Autoimmune Diseases , Diabetes Mellitus, Type 1 , Humans , Proteome , Diabetes Mellitus, Type 1/genetics , Bayes Theorem , Mendelian Randomization Analysis , Autoimmune Diseases/genetics , Autoimmune Diseases/therapy , Genome-Wide Association Study , Aminopeptidases
19.
Clin Immunol ; 262: 110177, 2024 May.
Article En | MEDLINE | ID: mdl-38460894

Calcium/calmodulin-dependent protein kinase IV (CaMK4) serves as a pivotal mediator in the regulation of gene expression, influencing the activity of transcription factors within a variety of immune cells, including T cells. Altered CaMK4 signaling is implicated in autoimmune diseases such as systemic lupus erythematosus, rheumatoid arthritis, and psoriasis, which are characterized by dysregulated immune responses and clinical complexity. These conditions share common disturbances in immune cell functionality, cytokine production, and autoantibody generation, all of which are associated with disrupted calcium-calmodulin signaling. This review underscores the consequences of dysregulated CaMK4 signaling across these diseases, with an emphasis on its impact on Th17 differentiation and T cell metabolism-processes central to maintaining immune homeostasis. A comprehensive understanding of roles of CaMK4 in gene regulation across various autoimmune disorders holds promise for the development of targeted therapies, particularly for diseases driven by Th17 cell dysregulation.


Autoimmune Diseases , Lupus Erythematosus, Systemic , Humans , Calmodulin/metabolism , Calmodulin/therapeutic use , Calcium/metabolism , Calcium/therapeutic use , Cell Differentiation , Calcium-Calmodulin-Dependent Protein Kinase Type 4/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 4/metabolism , Autoimmune Diseases/genetics , Autoimmune Diseases/metabolism , Th17 Cells
20.
PLoS Pathog ; 20(3): e1012095, 2024 Mar.
Article En | MEDLINE | ID: mdl-38512979

The 1858C>T allele of the tyrosine phosphatase PTPN22 is present in 5-10% of the North American population and is strongly associated with numerous autoimmune diseases. Although research has been done to define how this allele potentiates autoimmunity, the influence PTPN22 and its pro-autoimmune allele has in anti-viral immunity remains poorly defined. Here, we use single cell RNA-sequencing and functional studies to interrogate the impact of this pro-autoimmune allele on anti-viral immunity during Lymphocytic Choriomeningitis Virus clone 13 (LCMV-cl13) infection. Mice homozygous for this allele (PEP-619WW) clear the LCMV-cl13 virus whereas wildtype (PEP-WT) mice cannot. This is associated with enhanced anti-viral CD4 T cell responses and a more immunostimulatory CD8α- cDC phenotype. Adoptive transfer studies demonstrated that PEP-619WW enhanced anti-viral CD4 T cell function through virus-specific CD4 T cell intrinsic and extrinsic mechanisms. Taken together, our data show that the pro-autoimmune allele of Ptpn22 drives a beneficial anti-viral immune response thereby preventing what is normally a chronic virus infection.


Autoimmune Diseases , Lymphocytic Choriomeningitis , Animals , Mice , Alleles , Autoimmune Diseases/genetics , Autoimmunity/genetics , Phosphoric Monoester Hydrolases/genetics , Tyrosine
...